Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy

نویسندگان

چکیده

We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls enumeration higher genera generalization Catalan numbers, or, equivalently, maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz or lattice points in moduli spaces curves. Liu, Zhang, and Zhou conjectured that full partition function this is tau-function extended nonlinear Schr\"odinger hierarchy, an extension particular rational reduction Kadomtsev--Petviashvili hierarchy. prove version their conjecture specializing Givental--Milanov method allows to construct Hirota quadratic equations for function, then deriving from them Lax representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tau Function and Hirota Bilinear Equations for the Extended Bigraded Toda Hierarchy

The Toda lattice equation is a nonlinear evolutionary differential-difference equation introduced by Toda [1] describing an infinite system of masses on a line that interact through an exponential force which is used to explain the well-known FermiPasta-Ulam phenomenon. It was soon realized that this equation is completely integrable, i.e. admits infinite conserved quantities. It has important ...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Of Nonlinear Schrödinger Equations

The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.

متن کامل

Combinatoric Results for Graphical Enumeration and the Higher Catalan Numbers

We summarize some combinatoric problems solved by the higher Catalan numbers. These problems are generalizations of the combinatoric problems solved by the Catalan numbers. The generating function of the higher Catalan numbers appeared recently as an auxiliary function in enumerating maps and explicit computations of the asymptotic expansion of the partition function of random matrices in the u...

متن کامل

Numerical Continuation for Nonlinear SchrÖdinger Equations

We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2021

ISSN: ['0377-9017', '1573-0530']

DOI: https://doi.org/10.1007/s11005-021-01391-4